Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 14: 1346813, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435305

RESUMEN

Pseudomonas aeruginosa is a versatile opportunistic pathogen which causes a variety of acute and chronic human infections, some of which are associated with the biofilm phenotype of the pathogen. We hypothesize that defining the intracellular metabolome of biofilm cells, compared to that of planktonic cells, will elucidate the metabolic pathways and biomarkers indicative of biofilm inception. Disc-shaped stainless-steel coupons (12.7 mm diameter) were employed as a surface for static biofilm establishment. Each disc was immersed in a well, of a 24-well microtiter plate, containing a 1-mL Lysogeny broth (LB) suspension of P. aeruginosa ATCC 9027, a strain known for its biofilm prolificacy. This setup underwent oxygen-depleted incubation at 37°C for 24 hours to yield hypoxic biofilms and the co-existing static planktonic cells. In parallel, another planktonic phenotype of ATCC 9027 was produced in LB under shaking (200 rpm) incubation at 37°C for 24 hours. Planktonic and biofilm cells were harvested, and the intracellular metabolites were subjected to global untargeted metabolomic analysis using LC-MS technology, where small metabolites (below 1.5 kDa) were selected. Data analysis showed the presence of 324 metabolites that differed (p < 0.05) in abundance between planktonic and biofilm cells, whereas 70 metabolites did not vary between these phenotypes (p > 0.05). Correlation, principal components, and partial least square discriminant analyses proved that the biofilm metabolome is distinctly clustered away from that of the two planktonic phenotypes. Based on the functional enrichment analysis, arginine and proline metabolism were enriched in planktonic cells, but butanoate metabolism was enriched in biofilm cells. Key differential metabolites within the butanoate pathway included acetoacetate, 2,3-butandiol, diacetyl, and acetoin, which were highly upregulated in the biofilm compared to the planktonic cells. Exogenous supplementation of acetoin (2 mM), a critical metabolite in butanoate metabolism, augmented biofilm mass, increased the structural integrity and thickness of the biofilm, and maintained the intracellular redox potential by balancing NADH/NAD+ ratio. In conclusion, P. aeruginosa hypoxic biofilm has a specialized metabolic landscape, and butanoate pathway is a metabolic preference and possibly required for promoting planktonic cells to the biofilm state. The butanoate pathway metabolites, particularly acetoin, could serve as markers for biofilm development.


Asunto(s)
Acetoína , Pseudomonas aeruginosa , Humanos , Metabolómica , Metaboloma , Hipoxia , Biopelículas
2.
Front Microbiol ; 14: 1278821, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38029128

RESUMEN

Salmonella enterica serovar Enteritidis (SE) remains a frequent cause of foodborne illnesses associated with the consumption of contaminated hen eggs. Such a food-pathogen association has been demonstrated epidemiologically, but the molecular basis for this association has not been explored. Comparative genomic analysis was implemented to decipher the phylogenomic characteristics, antimicrobial resistance, and virulence potential of eggs-associated SE. Analyzing 1,002 genomes belonging to 841 sequence types of food-isolated SE strains suggests a high genomic similarity within the egg-related lineage, which is phylogenetically close to SE strains isolated from poultry but is different from those isolated from beef. Core genome- and single nucleotide polymorphism (SNP)-based phylogeny of 74 SE strains of egg origin showcased two distinct sublineages. Time-scaled phylogeny supported the possibility of a common ancestor of egg-related SE lineages. Additionally, genome mining revealed frequent antibiotic resistance due to the presence of aac(6')-Iaa and mdsAB encoded on the genomes of egg-associated SE strains. For virulence gene profiling, 103-113 virulence determinants were identified in the egg-associated SE, which were comparable to 112 determinants found in human-associated SE, emphasizing the capacity of egg-associated strains to infect humans and cause diseases. The findings of this study proved the genomic similarity of egg-associated SE strains, and these were closely related to poultry strains. The egg-associated strains also harbor virulence genes equivalent to those found in human-associated SE strains. The analysis provided critical insights into the genetic structure, phylogenomics, dynamics of virulence, and antibiotic resistance of Salmonella Enteritidis, circulating in eggs and emphasizing the necessity of implementing anti-Salmonella intervention strategies, starting at the production stage of the poultry supply chain.

3.
Antibiotics (Basel) ; 12(6)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37370324

RESUMEN

Biofilms are intricate multicellular structures created by microorganisms on living (biotic) or nonliving (abiotic) surfaces. Medically, biofilms often lead to persistent infections, increased antibiotic resistance, and recurrence of infections. In this review, we highlighted the clinical problem associated with biofilm infections and focused on current and emerging antibiofilm strategies. These strategies are often directed at disrupting quorum sensing, which is crucial for biofilm formation, preventing bacterial adhesion to surfaces, impeding bacterial aggregation in viscous mucus layers, degrading the extracellular polymeric matrix, and developing nanoparticle-based antimicrobial drug complexes which target persistent cells within the biofilm core. It is important to acknowledge, however, that the use of antibiofilm agents faces obstacles, such as limited effectiveness in vivo, potential cytotoxicity to host cells, and propensity to elicit resistance in targeted biofilm-forming microbes. Emerging next generation antibiofilm strategies, which rely on multipronged approaches, were highlighted, and these benefit from current advances in nanotechnology, synthetic biology, and antimicrobial drug discovery. The assessment of current antibiofilm mitigation approaches, as presented here, could guide future initiatives toward innovative antibiofilm therapeutic strategies. Enhancing the efficacy and specificity of some emerging antibiofilm strategies via careful investigations, under conditions that closely mimic biofilm characteristics within the human body, could bridge the gap between laboratory research and practical application.

4.
Front Microbiol ; 14: 1141907, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37125185

RESUMEN

Biofilm formation in food processing environment and within equipment increases the risk of product spoilage and contamination with pathogens. Cleaning-in-place (CIP) operations are useful in removing soils and in sanitizing processing equipment, including eliminating biofilms. However, CIP is a resource-intensive process, particularly in the usage of chemical detergents, heat, and sanitizers. The current study was initiated to investigate the feasibility of integrating ozone into CIP operations to facilitate the elimination of Pseudomonas biofilm, with the long-term goal of decreasing the dependance on conventional cleaning and sanitizing reagents. To investigate integrating ozone into CIP, a robust biofilm of Pseudomonas fluorescens was developed on a pilot-scale food processing equipment after 2 days of incubation in 10% skim milk (skim milk-water mixture, 1:9 v/v) under stagnant conditions, followed by additional 5 days of circulation while feeding 10% fresh skim milk. CIP was applied using water prerinse at 22-25°C, alkaline cleaning with 0.2% potassium hydroxide at 50°C, and a final water rinse. These CIP operations reduced planktonic cell populations below the detection method's limit but did not fully remove P. fluorescens biofilm from either smooth or rough surfaces of the processing equipment. When the CIP process was followed by application of an aqueous ozone step (10 ppm for 10 min), the treatment reduced biofilm cell population, on smooth and rough surfaces, below the recovery method's detection limit (0.9 and 1.4 log CFU/ 100 cm2, respectively). These findings demonstrate the utility of ozone-assisted CIP in eliminating microbial biofilms on processing equipment, but further research is needed to optimize the use of cleaning agents and the application of ozone.

5.
J AOAC Int ; 106(4): 854-865, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-36847424

RESUMEN

BACKGROUND: Careful review of the scientific databases revealed that no stability-indicating analytical method is available for the binary mixture of allopurinol (ALO) and thioctic acid (THA). OBJECTIVE: A comprehensive stability-indicating HPLC-DAD procedure has been executed for concurrent analysis of ALO and THA. METHOD: Successful chromatographic separation of the cited drugs was reached using a Durashell C18 column (4.6 × 250 mm, 5 µm particle size). The mobile phase consisted of a mixture of acidified water (pH 4.0) using phosphoric acid and acetonitrile pumped in gradient elution mode. For quantification of ALO and THA, their respective peak areas were recorded at 249 and 210 nm. A systematic validation of analytical performance was investigated in terms of system suitability, linearity, ranges, precision, accuracy, specificity, robustness, detection, and quantification limits. RESULTS: ALO and THA peaks emerged at retention times 4.26 and 8.15 min, respectively. Linear ranges for ALO and THA were 5-100 and 10-400 µg/mL, respectively, with correlation coefficient values exceeding 0.9999. Both drugs were exposed to conditions of neutral, acidic, and alkaline hydrolysis, oxidation, and thermal decomposition. Stability-indicating features have been demonstrated by resolution of the drugs from their forced degradation peaks. For verification of peak identity and purity, the diode-array detector (DAD) was used. In addition, degradation pathways for the cited drugs were postulated. Furthermore, separation of both analytes from about 13 medicinal compounds of different therapeutic classes disclosed optimum specificity of the proposed method. CONCLUSIONS: Advantageous application of the validated HPLC method for the concurrent analysis of ALO/THA in their tablet dosage form was accomplished. HIGHLIGHTS: So far, the described HPLC-DAD method is considered the first detailed stability-indicating analytical study for this pharmaceutical mixture.


Asunto(s)
Alopurinol , Ácido Tióctico , Cromatografía Líquida de Alta Presión/métodos , Comprimidos , Estabilidad de Medicamentos
6.
Appl Environ Microbiol ; 88(20): e0114022, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36197091

RESUMEN

Thermal pasteurization of shell eggs, at various time-temperature combinations, has been proposed previously and implemented industrially. This study was conducted to determine if shell egg heating rate, which varies with different pasteurization implementations, alters the Salmonella enterica serovar Enteritidis response to different stresses or expression of virulence. Shell eggs, containing Salmonella Enteritidis in yolk, were subjected to a low (2.4°C/min) or a high (3.5°C/min) heating rate during treatments that mimicked the pasteurization temperature come-up stage. The low heating rate protected Salmonella from the following processes: (i) lethal heat at the holding stage, (ii) loss of viability during 8-h cooling after heating, and (iii) sequential antimicrobial ozone treatment. Transcriptional analysis using Salmonella reporter strains revealed that the heat stress response gene grpE was transcribed at 3-fold-higher levels (P = 0.0009) at the low than at the high heating rate. Slow heating also significantly increased the transcription of the Salmonella virulence-related genes sopB (P = 0.0012) and sseA (P = 0.0006) in comparison to fast heating. Salmonella virulence was determined experimentally as 50% lethal dose (LD50) values in an in vivo model. The slow heat treatment mildly increased Salmonella Enteritidis virulence in mice (LD50 of 3.3 log CFU), compared to that in nontreated yolk (LD50 of 3.9 log CFU). However, when ozone application followed the slow heat treatment, Salmonella virulence decreased (LD50 of 4.2 log CFU) compared to that for heat-treated or nontreated yolk. In conclusion, heating shell eggs at a low rate can trigger hazardous responses that may compromise the safety of the final pasteurized products but following the thermal treatment with ozone application may help alleviate these concerns. IMPORTANCE Pasteurization of shell eggs is an important technology designed to protect consumers against Salmonella Enteritidis that contaminates this commodity. A low heating rate is preferred over a high rate during shell egg thermal pasteurization due to product quality concern. However, it is not known whether raising the temperature at different rates, during pasteurizing, would potentially affect product safety determinants. The current study demonstrated that slow heating during the pasteurization come-up stage increased the following risks: (i) resistance of Salmonella to pasteurization holding stage or to subsequent ozone treatment, (ii) recovery of Salmonella during the cooling that followed pasteurization, and (iii) Salmonella's ability to cause disease (i.e., virulence). Our findings inform food processors about potential safety risks to consumers resulting from improper use of processing parameters during shell egg pasteurization. Additionally, treating shell eggs with ozone after heat treatment could alleviate these hazards and protect consumers from natural Salmonella Enteritidis contaminants in shell eggs.


Asunto(s)
Ozono , Salmonella enteritidis , Animales , Ratones , Pasteurización/métodos , Calefacción , Virulencia , Calor , Huevos , Ozono/farmacología , Cáscara de Huevo/química , Recuento de Colonia Microbiana , Microbiología de Alimentos
7.
Pathogens ; 11(8)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-36014958

RESUMEN

The coronavirus disease 2019 (COVID-19) has resulted in tremendous human and economic losses around the globe. The pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus that is closely related to SARS-CoV and other human and animal coronaviruses. Although foodborne diseases are rarely of pandemic proportions, some of the causative agents emerge in a manner remarkably similar to what was observed recently with SARS-CoV-2. For example, Shiga toxin-producing Escherichia coli (STEC), the most common cause of hemolytic uremic syndrome, shares evolution, pathogenesis, and immune evasion similarities with SARS-CoV-2. Both agents evolved over time in animal hosts, and during infection, they bind to specific receptors on the host cell's membrane and develop host adaptation mechanisms. Mechanisms such as point mutations and gene loss/genetic acquisition are the main driving forces for the evolution of SARS-CoV-2 and STEC. Both pathogens affect multiple body organs, and the resulting diseases are not completely cured with non-vaccine therapeutics. However, SARS-CoV-2 and STEC obviously differ in the nature of the infectious agent (i.e., virus vs. bacterium), disease epidemiological details (e.g., transmission vehicle and symptoms onset time), and disease severity. SARS-CoV-2 triggered a global pandemic while STEC led to limited, but sometimes serious, disease outbreaks. The current review compares several key aspects of these two pathogenic agents, including the underlying mechanisms of emergence, the driving forces for evolution, pathogenic mechanisms, and the host immune responses. We ask what can be learned from the emergence of both infectious agents in order to alleviate future outbreaks or pandemics.

8.
Front Cell Infect Microbiol ; 12: 903979, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774398

RESUMEN

Contribution of food vehicles to pathogenicity of disease-causing microorganisms is an important but overlooked research field. The current study was initiated to reveal the relationship between virulence of Salmonella enterica serovar Enteritidis and egg yolk as a hosting medium. Mice were orally challenged with Salmonella Enteritidis cultured in egg yolk or tryptic soy broth (TSB). Additionally, mice were challenged with Salmonella Enteritidis cultured in TSB, followed by administration of sterile egg yolk, to discern the difference between pre-growth of the pathogen and its mere presence in egg yolk during infection. The pathogen's Lethal dose 50 (LD50) was the lowest when grown in yolk (2.8×102 CFU), compared to 1.1×103 CFU in TSB, and 4.6×103 CFU in TSB followed by administration of sterile yolk. Additionally, mice that orally received Salmonella Enteritidis grown in egg yolk expressed a high death rate. These findings were supported by transcriptional analysis results. Expression of promoters of virulence-related genes (sopB and sseA) in genetically modified Salmonella Enteritidis reporter strains was significantly higher (p < 0.05) when the bacterium was grown in the yolk, compared to that grown in TSB. Sequencing of RNA (RNA-seq) revealed 204 differentially transcribed genes in Salmonella Enteritidis grown in yolk vs. TSB. Yolk-grown Salmonella Enteritidis exhibited upregulated virulence pathways, including type III secretion systems, epithelial cell invasion, and infection processes; these observations were confirmed by RT-qPCR results. The transcriptomic analysis suggested that upregulation of virulence machinery of Salmonella Enteritidis grown in egg yolk was related to increased iron uptake, biotin utilization, flagellar biosynthesis, and export of virulence proteins encoded on Salmonella pathogenicity island 1, 2, 4, and 5. These biological responses may have acted in concert to increase the virulence of Salmonella infection in mice. In conclusion, growth in egg yolk enhanced Salmonella Enteritidis virulence, indicating the significance of this food vehicle to the risk assessment of salmonellosis.


Asunto(s)
Salmonelosis Animal , Infecciones por Salmonella , Animales , Pollos/microbiología , Yema de Huevo/microbiología , Ratones , Salmonelosis Animal/microbiología , Salmonella enteritidis/genética , Virulencia/genética
9.
Front Bioeng Biotechnol ; 10: 869778, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646844

RESUMEN

Production of some antimicrobial peptides by bacterial producers is a resource-intensive process, thus, using inexpensive growth media and simplifying antimicrobial extraction and down-stream processing are highly desirable. Acid whey, a dairy industry waste, is explored as a medium for production of broad-spectrum antimicrobials from selected bacteriocinogenic bacteria. Neutralized and yeast extract-supplemented acid whey was suitable for production of antimicrobials by four tested strains, but Paenibacillus polymyxa OSY-EC was the most prolific antimicrobial producer. Concentrating synthesized antimicrobials during culture incubation using beads of polymeric adsorbent resin, followed by solvent extraction and freeze-drying, resulted in antimicrobials-rich powder (AMRP). Under these conditions, P. polymyxa OSY-EC produced paenibacillin, polymyxin E, and fusaricidin, which are active against Gram-positive and Gram-negative bacteria and fungi, respectively. When media containing 2x and 4x minimum inhibitory concentrations of AMRP were inoculated with Listeria innocua and Escherichia coli, microbial populations decreased by ≥4-log CFU ml-1 in tryptic soy broth and ≥3.5-log CFU ml-1 in milk. The antimicrobial mechanism of action of AMRP solutions was attributed to the disruption of cytoplasmic membrane of indicator strains, L. innocua and E. coli. These findings exemplify promising strategies for valorization of acid whey via microbial bioreactions to yield potent antimicrobials.

10.
Drug Dev Ind Pharm ; 47(6): 887-896, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33899636

RESUMEN

The growing interest in Green Analytical Chemistry (GAC) principles through the replacement of polluting analytical procedures with greener ones, has encouraged us to develop an eco-friendly stability-indicating HPLC with diode array detection method (HPLC-DAD) for simultaneous determination of allopurinol (ALP) and benzbromarone (BNZ). Effective separation was accomplished using Durashell C18 column (4.6 × 250 mm, 5 µm particle size) with gradient elution of the mobile phase composed of 0.02 M ammonium acetate (pH 5.0) and methanol. Quantification of ALP and BNZ was based on measuring their peak areas at 251 nm. ALP and BNZ peaks eluted at retention times 4.85 and 10.30 min respectively. The proposed HPLC procedure was carefully validated in terms of system suitability, linearity, ranges, precision, accuracy, specificity, robustness, detection, and quantification limits. The linearity range for both ALP and BNZ was 5-100 µg/mL with correlation coefficients >0.9999. Forced degradation conditions of neutral, acidic, and alkaline hydrolysis, oxidation, and thermal degradation were applied on both drugs. Good resolution of the drugs from their forced degradation products proved that the proposed method is stability-indicating. In addition, the resolution of both drugs from about 10 pharmacologically or chemically related pharmaceutical compounds of different medicinal categories showed the high specificity of the proposed method. The validated HPLC method was successfully applied to the simultaneous determination of both drugs in their tablet dosage forms. Furthermore, greenness assessment and comparison with previously published methods were carried out using two different GAC metrics, namely, the national environmental method index (NEMI) and the analytical Eco-Scale.


Asunto(s)
Alopurinol , Benzbromarona , Cromatografía Líquida de Alta Presión , Comprimidos
11.
Microbiol Resour Announc ; 10(9)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664142

RESUMEN

Salmonella enterica serovar Enteritidis ODA 99-30581-13 is a relatively heat-resistant strain isolated from shell eggs. The strain has a 4,777,965-bp genome sequence (52.1% GC content) that was predicted to encode 4,455 proteins, including heat stress response proteins and stress response regulators; these may be involved in its heat resistance.

12.
Microorganisms ; 9(2)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670672

RESUMEN

Some Salmonella enterica strains survive well in low-water activity (low-aw) foods and cause frequent salmonellosis outbreaks in these products. Methods are needed to overcome such desiccation-resistant Salmonella and to improve the safety of low-aw foods. Building on a recent finding, we hypothesized that natural antimicrobial food additives, which are active against cytoplasmic membrane, could overcome this desiccation resistance phenomenon, and thus, sensitize the pathogen to drying and mild processing. Food additives were screened for the ability to cause leakage of intracellular potassium ions; retention of these ions is vital for protecting Salmonella against desiccation. Two antimicrobial food additives, carvacrol and thymol, caused considerable potassium leakage from the desiccation-resistant S. enterica serovars, Tennessee and Livingstone. Thus, carvacrol and thymol were investigated for their ability to sensitize the desiccation-adapted S. enterica to heat treatment. The combined use of food additives, at their minimum inhibitory concentrations, with heat treatment at 55 °C for 15 min caused 3.1 ± 0.21 to more than 5.5 log colony forming unit (CFU)/mL reduction in desiccation-adapted S. enterica, compared to 2.4 ± 0.53-3.2 ± 0.11 log CFU/mL reduction by sole heat treatment. Carvacrol was the additive that caused the greatest potassium leakage and sensitization of Salmonella to heat; hence, the application of this compound was investigated in a food model against Salmonella Typhimurium ASD200. Addition of carvacrol at 200 or 500 ppm into liquid milk followed by spray-drying reduced the strain's population by 0.9 ± 0.02 and 1.3 ± 0.1 log CFU/g, respectively, compared to 0.6 ± 0.02 log CFU/g reduction for non-treated spray-dried milk. Additionally, freeze-drying of milk treated with high levels of carvacrol (5000 ppm) reduced the population of Salmonella Typhimurium ASD200 by more than 4.5 log CFU/g, compared to 1.1 ± 0.4 log CFU/g reduction for the freeze-dried untreated milk. These findings suggest that carvacrol can combat desiccation-resistant S. enterica, and thus, potentially improve the safety of low-aw foods.

13.
Biochem Biophys Res Commun ; 547: 155-161, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33610915

RESUMEN

Bifidobacterium bifidum is one of the most abundant members of the gut microbiota at the early stage of life. The established association of the bacterium with the human gut confers health benefits. Such successful persistence of B. bifidum necessitates metabolic adaptation to the host-derived carbohydrates, a process which is poorly understood. The current study focuses on revealing the genomic-based phylogeny (phylogenomics) of B. bifidum and utilizing comparative genomics to decipher the glycolytic abilities of bifidobacterial strains isolated from different human body niches (feces, human gut, vagina, and breast milk). When the phylogenomic analysis was performed on 95 B. bifidum strains, currently available on the RefSeq database, the bacterium was clearly distinguished from other members of the Bifidobacterium genus. Furthermore, a pairwise genomic comparison indicated that a large proportion of orthologous gene families were shared among the B. bifidum strains. These findings highlight the notion that the B. bifidum species is genetically similar and may perform similar functions in their host. When 15 B. bifidum genomes representing strains from different human body niches were annotated, the resulting functional profile showed the presence of enriched proteins involved in carbohydrate utilization. Moreover, mining the 15 B. bifidum genomes for the presence of Carbohydrate-Active Enzyme (CAZY) systems, the analysis found the existence of diverse protein families which include glycosyl hydrolases, glycosyl transferases, carbohydrate-binding modules, and carbohydrate esterases. Collectively, these CAZY systems enables B. bifidum to utilize host-derived glycans (e.g., mucin) and diet-derived carbohydrates (e.g., starch). In contrast, a correlation analysis revealed that B. bifidum strains isolated from the different body niches were indistinguishable in the context of presence-absence of CAZY systems. These findings emphasize the valuable use of comparative genomics in deciphering the glycolytic abilities of B. bifidum and consequently its adaptation to carbohydrate utilization in the human gut environment.


Asunto(s)
Bifidobacterium bifidum/genética , Carbohidratos de la Dieta/metabolismo , Microbioma Gastrointestinal , Adaptación Fisiológica/genética , Bifidobacterium bifidum/metabolismo , Biología Computacional/métodos , Genoma Bacteriano , Genómica , Humanos , Filogenia
14.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33414333

RESUMEN

Salmonella enterica serovar Livingstone 1236H was isolated originally from peanut butter and represents a health risk in low-moisture foods. The current work presents the strain's genome sequencing results, which show a 4,824,729-bp genome sequence and 4,435 protein coding sequences, including some that are involved in adaptation to low-moisture environments.

15.
Microorganisms ; 10(1)2021 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-35056493

RESUMEN

Some Salmonella enterica serovars are frequently associated with disease outbreaks in low-moisture foods (LMF) due to their ability to adapt efficiently to desiccation stress. These serovars are often persistent during food processing. Disruption of these resistance responses was accomplished previously using the membrane-active lipopeptide, paenibacterin. This study was initiated to determine how desiccation resistance mechanisms are overcome when Salmonella Tennessee, a known resistant serovar, is treated with the membrane-active food additives carvacrol and thymol. Knowing that the minimum inhibitory concentrations (MICs) of carvacrol and thymol against Salmonella Tennessee are 200 and 100 µg/mL, the concentrations tested were 100-400 and 50-200 µg/mL, respectively. Results show that desiccation-adapted Salmonella Tennessee, prepared by air drying at 40% relative humidity and 22-25 °C for 24 h, was not inactivated when exposed for 4.0 h to less than 2xMIC of the two additives. Additionally, treatment of desiccation-adapted Salmonella Tennessee for 120 min with carvacrol and thymol at the MIC-level sensitized the cells (1.4-1.5 log CFU/mL reduction) to further desiccation stress. Treating desiccation-adapted Salmonella Tennessee with carvacrol and thymol induced leakage of intracellular potassium ions, reduced the biosynthesis of the osmoprotectant trehalose, reduced respiratory activity, decreased ATP production, and caused leakage of intracellular proteins and nucleic acids. Carvacrol, at 200-400 µg/mL, significantly downregulated the transcription of desiccation-related genes (proV, STM1494, and kdpA) as determined by the reverse-transcription quantitative PCR. The current study revealed some of the mechanisms by which carvacrol and thymol combat desiccation-resistant Salmonella Tennessee, raising the feasibility of using these additives to control desiccation-adapted S. enterica in LMF.

16.
Front Microbiol ; 11: 608314, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33362752

RESUMEN

An Enterococcus durans strain, designated OSY-EGY, was previously isolated from artisanal cheese. In this work, comparative genomic and phenotypic analyses were utilized to assess the safety characteristics and probiotic traits of the bacterium. The comparative genomic analysis revealed that the strain is distantly related to potentially pathogenic Enterococcus spp. The genome was devoid of genes encoding acquired antibiotic resistance or marker virulence factors associated with Enterococcus spp. Phenotypically, the bacterium is susceptible to vancomycin, ampicillin, tetracycline, chloramphenicol, and aminoglycosides and does not have any hemolytic or gelatinase activity, or cytotoxic effect on Caco-2 cells. Altogether, these findings confirm the lack of hazardous traits in E. durans OSY-EGY. Mining E. durans OSY-EGY genome, for probiotic-related sequences, revealed genes associated with acid and bile salts tolerance, adhesion, competitiveness, antioxidant activitiy, antimicrobial activity, essential amino acids production, and vitamins biosynthesis. Phenotypically, E. durans OSY-EGY was tolerant to acidic pH (3.0), and presence of 0.3% bile salts. The bacterium showed adhesion capability to Caco-2 cells, cholesterol-lowering effect, DPPH scavenging activity, and antimicrobial activity against several Gram-positive pathogenic bacteria. Based on the current work, we propose that E. durans OSY-EGY is a potentially safe strain with desirable probiotic and antimicrobial traits. Thus, the investigated strain could be a promising candidate for several industrial applications.

17.
Heliyon ; 6(9): e05020, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32995651

RESUMEN

Foodborne diseases represent a global health threat besides the great economic losses encountered by the food industry. These hazards necessitate the implementation of food preservation methods to control foodborne pathogens, the causal agents of human illnesses. Until now, most control methods rely on inhibiting the microbial growth or eliminating the pathogens by applying lethal treatments. Natural antimicrobials, which inhibit microbial growth, include traditional chemicals, naturally occurring antimicrobials, or biological preservation (e.g. beneficial microbes, bacteriocins, or bacteriophages). Although having great antimicrobial effectiveness, challenges due to the adaptation of foodborne pathogens to such control methods are becoming apparent. Such adaptation enables the survival of the pathogens in foods or food-contact environments. This imperative concern inspires contemporary research and food industry sector to develop technologies which do not target microbial growth but disarming microbial virulence factors. These technologies, referred to as "antivirulence", render the microbe non-capable of causing the disease with very limited or no opportunities for the pathogenic microorganisms to develop resistance. For the sake of safer and fresh-like foods, with no effect on the sensory properties of foods, a combination of two or more natural antimicrobials or with other stressors, is now widespread, to preserve foods. This review introduces and critically describes the traditional versus the emerging uses of natural antimicrobials for controlling foodborne pathogens in foods. Development of biological control strategies using natural antimicrobials proved to be effective in inhibiting microbial growth in foods and allowing improved food safety. In the meanwhile, discovery of new antivirulence agents could be a transformative strategy in food preservation in the far future.

18.
Microbiol Resour Announc ; 9(35)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32855257

RESUMEN

Bacteriophage OSY-STA is a new anti-Salmonella phage that was isolated from a chicken farm in Ohio. It is a promising candidate for food safety applications, considering its efficiency in infecting several Salmonella enterica serovars. The current work presents its genomic characteristics. Salmonella phage OSY-STA has a 111,039-bp genome and 166 open reading frames.

19.
Drug Dev Ind Pharm ; 46(8): 1278-1288, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32594780

RESUMEN

A stability-indicating high performance liquid chromatography method with diode array detection (HPLC-DAD) was developed and validated for simultaneous determination of phenylephrine hydrochloride (PHR), dimetindene maleate (DMD) and benzalkonium chloride (BZM) in nasal drops and gel dosage forms. Effective liquid chromatographic separation was accomplished by employing Venusil XBP Cyano column (4.6 × 250 mm, 5 µm particle size) with gradient elution of the mobile phase consisting of buffer solution of potassium dihydrogen phosphate (0.025 M) and sodium 1-butane sulfonate (SBS) (0.025 M) (adjusted to pH 6.0) and acetonitrile. Peak areas of PHR, DMD and BZM at 271, 256 and 206 nm, respectively were measured and correlated to their concentrations. Peaks of PHR and DMD eluted at retention times 3.76 and 9.06 min, respectively, while BZM eluted as a couple of peaks at 11.88 and 12.51 min. The proposed HPLC procedure was carefully validated in terms of system suitability, linearity, ranges, precision, accuracy, specificity, robustness, detection and quantification limits. The linearity range for both PHR and BZM was 10-400 µg/mL and DMD was 5-300 µg/mL with correlation coefficients >0.9999. The studied compounds were subjected to stress conditions of neutral, acidic and alkaline hydrolysis, oxidation and thermal degradation. Good resolution of the three compounds from their forced degradation products proves specificity and stability-indicating merits of the proposed method. In addition, resolution of the three drugs under investigation from some pharmaceutical compounds of different medicinal categories showed the high specificity of the described method.


Asunto(s)
Compuestos de Benzalconio , Dimetindeno , Fenilefrina/química , Cromatografía Líquida de Alta Presión , Fenilefrina/análisis
20.
Saudi Pharm J ; 28(12): 1558-1565, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33424249

RESUMEN

Conjunctivitis, caused by bacterial infections, represents health concern and diagnosis of the disease is pivotal for the proper selection of the treatment. The main causes of bacterial conjunctivitis vary in different countries. The current study investigated the common bacterial causes of bacterial conjunctivitis from eye clinics' attendants and evaluated the effectiveness of different therapeutic approaches. Eye swabs from patients, diagnosed with conjunctivitis, were assessed microbiologically and the isolated bacteria were identified using the standard biochemical identification and sequencing of the 16S rRNA gene. Antibiotics' susceptibility of the conjunctivitis-associated bacterial pathogens was evaluated against nineteen broad-spectrum antibiotics. In the meanwhile, cell-free preparations from probiotic Lactobacillus and Bifidobacterium strains were used to evaluate their antagonistic activities. Findings from this study showed that out of 52 specimen, 17 eye swabs from patients with conjunctivitis were bacterial culture-positive. The identity of the bacterial species, using the biochemical identification system, was Staphylococcus aureus (4 isolates) and S. epidermidis (13 isolates). Staphylococcus spp. showed susceptibility to linezolid, vancomycin, novobiocin, and fluoroquinolones (norfloxacin, ofloxacin, ciprofloxacin and levofloxacin). However, isolates from the two Staphylococcus spp. expressed resistance to penicillin G, oxacillin, and cephalexin. As alternatives to antibiotics, the growth of Staphylococcus spp., including isolates with antibiotic resistance, was inhibited by cell-free preparations of the 4 probiotic Lactobacillus and the 2 Bifidobacterium strains. These findings provide evidence that topical antibiotics such as fluoroquinolones are still effective antimicrobial agents against staphylococci associated with conjunctivitis whereas probiotic preparations could be promising for further research to pave the way for their therapeutic applications against ophthalmic diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...